

(FP7 609081)

D6.1 A scalable data management architecture for Smart City
environments

Date 2014-09-15 – Version 1.0

Published by the Almanac Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
Objective ICT-2013.1.4: A reliable, smart and secure Internet of Things for Smart Cities

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 2 of 43 Submission date: 2014-09-15

Document control page

Document file: D6.1 A Scalable Data Management Architecture for Smart City

Environments.docx

Document version: 1.0

Document owner: Matts Ahlsén (CNet)

Work package: WP6 – Scalable Data Management

Task: T6.1 – Data Context Management Framework Architecture

 T6.2 – Framework for Information Aggregation, Storage and Mining

 T6.3 – Event Detection and Management

Deliverable type: R

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Matts Ahlsen (CNET) 2014-05-28 Initial structure and ToC

0.2 Matts Ahlsen (CNET) 2014-06-24 Revised structure for plenary meeting

0.3 Matts Ahlsen, Mathias Axling

(CNET)

2014-08-05 Revised assignments, Data model

section update

0.35 Matts Ahlsen, Mathias Axling,

Peter Rosengren (CNET),

Jaroslav Pullman, Angel

Carvajal Soto (FIT)

2014-08-13 Structure update after telco

0.5 Matts Ahlsen, Mathias Axling,

Peter Rosengren (CNET),

Angel Carvajal Soto (FIT)

2014-08-25 Update data fusion and data model and

data storage section

0.7 Matts Ahlsen, Mathias Axling,

Peter Rosengren (CNET)

2014-09-04 Resource and services model, Query

and data model update

0.9 Matts Ahlsen, Mathias Axling,

Peter Rosengren (CNET)

2014-09-09 Version for internal review

1.0 Matts Ahlsen, Mathias Axling,

Peter Rosengren (CNET),

Angel Carvajal Soto (FIT)

2014-09-15 Final version for submission to the

European Commission

Internal review history:

Reviewed by Date Summary of comments

Dario Bonino 2014-09-09 Approved with major comments

Alexandre Alapetite 2014-09-09 Approved with minor comments

Legal Notice

The information in this document is subject to change without notice. The Members of the Almanac

Consortium make no warranty of any kind with regard to this document, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. The Members of the Almanac

Consortium shall not be held liable for errors contained herein or direct, indirect, special, incidental or

consequential damages in connection with the furnishing, performance, or use of this material. Possible
inaccuracies of information are under the responsibility of the project. This report reflects solely the views of

its authors. The European Commission is not liable for any use that may be made of the information
contained therein.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 3 of 43 Submission date: 2014-09-15

Index:

List of Figures ... 4

1. Executive summary ... 5

2. Introduction .. 6

 Purpose, context and scope of this deliverable .. 6 2.1

 ALMANAC Architecture ... 6 2.2

3. Big Data Management ... 8

 Storage Frameworks .. 8 3.1

 Computational Frameworks ... 9 3.2
 Hadoop ... 9 3.2.1

 Hadoop based systems: HBase and Cassandra 11 3.2.2

 Management of time series data ... 13 3.3

 Design considerations ... 14 3.4

4. Data Management Architecture ... 16

 Overview ... 16 4.1

 Storage Manager .. 17 4.2

 Data Fusion Manager .. 18 4.3

 Scalability .. 18 4.4

 Caching ... 18 4.5

5. Data Retrieval and Query .. 19

 Query API .. 19 5.1

 Data format ... 19 5.2

 Location and position .. 20 5.3

 Standards .. 20 5.4

 Query API .. 20 5.4.1

 Query Language ... 20 5.4.2

 Messaging .. 21 5.4.3

 Data Formats ... 21 5.4.4

6. Data Fusion ... 22

 Data Fusion in ALAMANAC ... 22 6.1

 Data Fusion Language review and design choices 23 6.2

7. Data Management Framework Data Model .. 25

 Overview ... 25 7.1

 Physical World Data Management ... 26 7.2

 Element: IoTEntity .. 26 7.2.1

 Element: IoTProperty .. 27 7.2.2

 Collections of objects - The arrays ... 30 7.2.3

 Events - Content Model .. 31 7.2.4

 IoTResources and Services Data Management .. 33 7.3

 IoT Resource REST .. 34 7.3.1

 IoT Resource Catalogue XPath .. 34 7.3.2

 IoT Resource Catalogue Retrieval and Service Invocation 35 7.3.3

8. Conclusions and Future Development .. 36

9. References .. 37

10. Appendices .. 38

 Data Fusion Language constructs comparisons 38 10.1

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 4 of 43 Submission date: 2014-09-15

List of Figures

Figure 1: Functional View of ALMANAC platform components (from D3.1.1) 7
Figure 2: HDFS Data Distribution ... 10
Figure 3: MapReduce task distribution .. 10
Figure 4: MapReduce results distribution .. 11
Figure 5: HBase columns .. 11
Figure 6: Cassandra concepts ... 12
Figure 7: OpenTSDB and HBase .. 13
Figure 8: Example of KairosDB-importable JSON-metric ... 14
Figure 9. IoTWorld gateways provide a way to distribute and aggregate smart city related

data. .. 16
Figure 10: IoTWorld gateway details .. 17
Figure 11: GeoJson for phone device ... 20
Figure 12: Data Fusion building blocks ... 22
Figure 13: Architecture of first Data Fusion prototype integrating to sample CEP engines. 23
Figure 14: The IoTEntity Content Model ... 27
Figure 15: The IoTProperty Content Model .. 28
Figure 16: The IoTStateObservation content model ... 29
Figure 17: A power switch entity example .. 30
Figure 18: Collection wrappers for collections of IoTEntity, IoTProperty and

IoTStateObservation elements .. 30
Figure 19: The top level of the generic Event Model .. 31
Figure 20: The EventMeta content model .. 32
Figure 21: An example of an Event message ... 33
Figure 22: IoTResource Catalogue Browser ... 34

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 5 of 43 Submission date: 2014-09-15

1. Executive summary

The Data Management Framework (DMF) in the ALMANAC architecture is characterized by the

following features,

- IoT-oriented data models for physical world, entity and resource management

- Distributed and scalable storage system based on big data principles in cloud environments

- REST-based interfaces for data retrieval and actuation

- Data Fusion Engine and language integrated with support for Complex Event Processing (CEP)

The purpose of the DMF is to provide flexible and robust data and event management to Smart City

applications that need to access a variety of (IoT) resources, devices and services possibly in
distributed cloud environments. The initial test beds are being defined for the waste and water

management domains in the project.

The design of the Data Management Framework is done within the context of the overall ALMANAC

platform architecture design, reported in its initial version in deliverable D3.1.1. The adjacent
architecture tiers, i.e., the Virtualization Layer (VL) and the Smart City Resource Adaptation Layer

(SCRAL), interact with the DMF through a generic ALMANAC REST interface and cloud services.

This document describes the first version of the DMF and discusses the main design assumptions
and technical solutions adopted so far.

A first set of prototype implementations of the main DMF components are introduced in this
deliverable: the IoTWorld Gateway, IoT Resource Catalogue, Storage Manager, the Data Fusion

Engine and the Event Manager.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 6 of 43 Submission date: 2014-09-15

2. Introduction

 Purpose, context and scope of this deliverable 2.1

The purpose of this deliverable is to provide and updated view on the current design of the Data

Management Framework in ALMANAC. This is done in the context of the WP6 (“Scalable Data
Management”) and contributes to the development of the overall ALMANAC platform architecture

(carried out in WP3.).

The objective of WP6 is to provide an integrated approach to data and event management in which
message-based information exchange is combined with highly efficient event processing and

configurable, and scalable, data management. The main outcome of the work package will be a
Smart City Data Management Framework integrated into the overall ALMANAC Smart City Platform,

and built upon the LinkSmart middleware.

The DMF envisioned role, in the overall architecture, is to provide flexible and robust data and event
management to Smart City applications that need to access a variety of (IoT) devices and services

possibly in cloud environments. Initial test beds, in this project, will be focused on the waste and
water management domains.

The Data Management Framework in the ALMANAC architecture is characterized by the following

features,

- IoT-oriented data models for physical world, entity and resource management

- Distributed and scalable storage system based on big data principles in cloud environments

- REST-based interfaces for data retrieval and actuation

- Data Fusion Engine and language integrated with support for Complex Event Processing (CEP)

This document describes, in particular, the first design cycle of core functionalities of the DMF,

encompassing:

- the IoTWorld Gateway design and implementation,

- the Storage Manager design and implementation

- the Query interfaces and data fusion language design,

- the Event and Data model, and,

- the REST interfaces for event and data management.

This document is an extension of the documentation accompanying the internal deliverable ID6.2,
and describing the initial prototypes for data fusion, storage management and event processing.

 ALMANAC Architecture 2.2

The ALMANAC system is a platform for Smart City applications exploiting, and advancing, IoT, M2M and
Cloud technologies.

A first version of the overall architecture is documented in the deliverable D3.1.1, and a functional
view of this architecture is reported in Figure 1 for the sake of clarity, high-lighting the main

components and interfaces.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 7 of 43 Submission date: 2014-09-15

Figure 1: Functional View of ALMANAC platform components (from D3.1.1)

As can be noticed, the platform provides to third party applications 4 main services:

 Interoperability over devices. Enabled by the Smart City Resources Adaptation Layer

(SCRAL), applications can access any kind of devices, whichever proprietary protocol they

may adopt, over a uniform web-service based interface.

 Service virtualization. Enabled by the Virtualization Layer, the applications relying on the

middleware do not have to know where the services, or devices, they consume / interface

are placed, or whether they actually exist. The Virtualization Layer provides a service look-

up mechanisms that bridges physical network boundaries, and can even wrap arbitrary data-
sets – like historic measurements or cached values – as consumable services.

 Composition of rules and caching of data. There are multiple scenarios, where applications

are not interested in current device values, but would rather like to be informed if specific
conditions are met, or if specific patterns occur in particular intervals: this capability is

provided by the Data Management Framework. The component directly grabs data coming
from devices, and by parsing and indexing it, enables later complex querying. The rules or

mechanisms that the Data Management Framework should execute are either specified by

applications either directly or through the Virtualization Layer.

 Privacy policies of individual providers. While mainly required by providers of services and

data sets, applications can also benefit from knowing that they cannot run into the threat of

invading privacy of individual services they consume. Service and device providers
individually define policies regarding the data they provide. These policies are then enforced

by multiple Policy Enforcement Points (PEP) distributed throughout the platform.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 8 of 43 Submission date: 2014-09-15

3. Big Data Management

In Smart City applications the amount of data gathered from the city sensors and processes is

clearly huge and therefore the ALMANAC platform needs solutions face big data challenges. This

section, reports the results of a survey of existing approaches and solutions to Big Data
management and analysis, to be used as reference in the DMF design.

Big data is usually collected through various data sources: data warehouses, the Web, networked
machines, virtual machines, sensors over the network, legacy applications and clusters, etc. Roughly

the challenges in BigData can be divided into how to store the data and the computational

framework for processing and extracting knowledge from the data.

 Storage Frameworks 3.1

The way data is stored in a database management system (DBMS) determines the allowed kind of

queries and their computational properties (e.g., time efficiency). Both the storage and the access
methods define the possible optimizations we can think of, and implement, over an existing

architecture. Two major storage layouts for DBMSs are currently adopted in storage systems: the
row-oriented and the column-oriented architecture. In a row-oriented database data is stored and

processed one tuple at a time, i.e., by elaborating one row of a table at a time. Row-oriented

technology has been the basis for all major commercial DBMSs and prevailed in the past years for
many good reasons related to enterprise data handling processes. For example, organizing data in

form of tuples allows easily loading, updating, and processing, relevant information given a single
database entry point. This kind of processing is typical of databases used for online transaction

processing (OLTP).

Over the years, the application needs have changed. In addition to OLTP, applications now critically

need the ability to handle analytical queries for OnLine Analytical Processing (OLAP). This kind of

queries do not always need to process full tuples. Instead, they focus on analyzing a subset of a
table's attributes, e.g., by running various aggregations to understand and analyze the data about a

given enterprise process. For this kind of applications column-oriented architectures seem more
natural, and this lead to the design of a number of systems, e.g., MonetDB and C-Store, based on

such assumption. These systems were originally inspired by the Decomposition Storage model

(DSM) [2]. Column-oriented DBMSs store data one column at a time, as opposed to one tuple at a
time. This means the system only needs to load those attributes (i.e., columns) that are relevant to

our query, rather than always loading an entire tuple. Column-oriented storage systems go far
beyond simply storing data by row, by offering optimizations such as column-specific compression

techniques.

As data collections become larger and larger, response times evolve to one of the major bottlenecks.

Applications in, e.g., scientific data analysis and social networks, avoid using database systems due

to the complexity and the high response time. For these applications data collections keep growing
fast, generating high data volumes to move, store, let alone analyze.

Driven by scalability requirements of Big Data, NoSQL data stores have recently emerged as
alternatives to classical relational DBMSs. Namely, NoSQL data stores rely on horizontal scaling,

which, in turn, relies on partitioning a data store across several machines to cope with massive

amounts of data. A specific architecture for horizontal scaling is the shared-nothing architecture in
which each machine is independent and self-sufficient and none of the machines being part of a

storage system share memory or disk. In a shared-nothing architecture, each portion of a
partitioned data store residing on a given machine is called a shard and the data store partitioning

process is called sharding. Horizontal scaling and sharding are in sharp contrast to the vertical

scaling approach, traditionally employed in commercial DBMSs, which relies on enhancing the
hardware characteristics (e.g., CPU/memory) of a single machine in order to provide scalability.

In contrast to SQL databases, NoSQL data stores typically have a simpler API interface (e.g., a key-
value store) and are able to effectively support dynamic addition of new attributes to data records.

One way to classify NoSQL data stores is with respect to their different data models. We distinguish
three main categories of NoSQL data store models.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 9 of 43 Submission date: 2014-09-15

 Key-Value data Stores (KVS). These data stores handle key-value couplesindexed over the

key content. KVS systems typically provide replication, versioning, locking, transactions,
sorting, and/or other features. The client API offers simple operations including puts, gets,

deletes, and key lookups. Examples include: Amazon Dynamo, Project Voldemort and RIAK.

 Document Data Stores (DDS). DDS typically store more complex data than KVS, allowing for
nested values and dynamic attribute definition at runtime. Unlike KVS, DDS generally

support secondary indexes and multiple types of documents (objects) per database, as well

as nested documents or lists. Examples include Amazon SimpleDB, CouchDB,
Membase/Couchbase and MongoDB.

 Extensible Record Data Stores (ERDS). ERDS store extensible records, where default

attributes (and their families) can be defined in a schema, but new attributes can be added
per record. ERDS can partition extensible records both horizontally (per-row) or vertically

(per-column) across a data store, and can simultaneously adopt both partitioning

approaches. Examples include Google BigTable, HBase and Cassandra.

Among other recent approaches to data storage architectures, specifically addressing data loading
performance, is the proposed NoDB [3]. This design does not require traditional data loading while

still maintaining the whole feature set of a modern database system. NoDB uses raw data files fully

integrated with the query engine. It is an API with inputs from internal and external data and it is
ultimately responsible for serving the information on the basis of a trailing confidence score on the

item provided as query. In situ query processing, however, creates new bottlenecks, namely the
repeated parsing and tokenizing overhead and the expensive data type conversion costs, which must

be addressed by a NoDB prototype system. The techniques used to address these issues involve
adaptive indexing mechanisms that maintain positional information to provide efficient access to raw

data files, flexible caching structure, etc.

 Computational Frameworks 3.2

There are basically two ways of analyzing big data to create knowledge – batch engines and

dynamic, interactive querying. Batch processes are eminently meant to process large amounts of

raw data, in order to produce results that can be afterwards analyzed efficiently by an interactive
query engine. MapReduce is currently the most widely used programming paradigm for this kind of

applications.

The MapReduce paradigm has been developed originally at Google. The approach takes inspiration

from functional programming, and it is based on a map phase where local data is processed and

transformed in a series of (key; value) pairs. Those pairs are then shuffled across the data center to
reducers, each responsible of a set of keys, in order to produce aggregated results. By virtue of

having no centralized bottleneck, software that adopts the MapReduce solution can scale to
thousands of machines; this allows scaling horizontally a cluster, i.e. adding more machines. The

success of this approach can be largely attributed to the fact that the alternative of scaling vertically,

by using more powerful machines, is generally much more expensive and in several cases
unfeasible.

To support interactive querying of Big Data there are several frameworks such as: Dremel originally
from Google, Apache Drill and Impala (which builds on the principles from Dremel). The data model

is based on strongly-typed nested records. Dremel moreover uses a columnar data layout: all the
values of a given field are stored consecutively, to improve the retrieval efficiency and implements

its own SQL-like query syntax.

 Hadoop 3.2.1

The most widely used tool for MapReduce approaches is Apache Hadoop which is an open-source

framework written in Java that implements the MapReduce programming model discussed above.
Rather than relying on hardware to deliver high-availability, Hadoop itself detects and handles

failures at the application layer, delivering a highly-available service on top of a cluster of commodity

machines.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 10 of 43 Submission date: 2014-09-15

In short Hadoop is:

 An open source software platform managed by the Apache Software Foundation.

 A way of storing enormous data sets across distributed clusters of servers and then running

"distributed" analysis applications in each cluster.

 Robust and safe due to replicas among servers. The NameNode (which keeps the directory

tree of all files in the file system, and tracks where across the cluster the file data is kept) is
a single point of failure though.

Hadoop consists of two main parts:

 A data processing framework

 A distributed file system for data storage (HDFS)

In HDFS, data is replicated across multiple nodes which provide data protection and computational
performance (Figure 2).

Figure 2: HDFS Data Distribution

Hadoop is not a database but more of a data warehousing system. There are no queries like SQL

involved, MapReduce is the mechanism that actually gets data processed. It runs as a series of jobs,

with each job being essentially a separate Java application that goes out into the data and starts
pulling out information as needed.

 Figure 3: MapReduce task distribution

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 11 of 43 Submission date: 2014-09-15

The task is done in parallel on each node (mapped) and then the results from these nodes are

reduced into one final result.

Figure 4: MapReduce results distribution

Using MapReduce instead of a query-language like SQL adds a lot of complexity and there are
therefore tools to convert query-language into MapReduce jobs. Examples of these are Hive and Pig.

But MapReduce's complexity and its limitation to one-job-at-a-time batch processing tends to result

in Hadoop getting used more often as a data warehousing than as a data analysis tool.

 Hadoop based systems: HBase and Cassandra 3.2.2

To provide a higher level of database functionality there are products that add a database
model/structure on top of Hadoop. The two most well-known are HBase and Cassandra.

HBase is a column-oriented database management system that runs on top of HDFS. HBase is a set
of tables with rows and columns. It does not support structured query language like SQL, but

provides interfaces for Avro, REST, and Thrift. A master node manages cluster and region servers,

which store portions of the tables and perform the work on the data. Each table must have an
element defined as a Row (Primary) Key, and HBase is indexed by row key, column and timestamp.

Row key design is the single most important aspect of HBase table designs.

Figure 5: HBase columns

Cassandra is a column-oriented database management system with a decentralized architecture
where, every node in the cluster has the same role. This provides high availability with no single

point of failure. There is also CQL (Cassandra Query Language), a SQL-like alternative query-

language.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 12 of 43 Submission date: 2014-09-15

Figure 6: Cassandra concepts

The following tables summarizes some of the differences between these two Hadoop based systems.

Point HBase Cassandra

CAP Theorem Focus Consistency, Availability Availability, Partition-Tolerance

Optimized For Reads Writes

RowKey Slices Yes No

Explicit Row Locks Yes No

Cluster Admin Nodes Zookeeper, NameNode, HMaster All Nodes are Equal

Table 1: HBase vs Cassandra

When to use

Cassandra HBase

Very high
velocity random
writes & reads

Optimized for reads

Flexible
sparse/wide
column
requirements

Well suited for doing range based
scans

No multiple
secondary index
needs

Applications with strict consistency
requirements

 Applications with fast reads and
writes with scalability

Table 2: Use of Hbase vs Cassandra

When not to use

Cassandra HBase

Dynamic
queries on
columns

Applications that
need:

full table scans

data to be
aggregated across
rows

Searching
column data

Low latency

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 13 of 43 Submission date: 2014-09-15

 Management of time series data 3.3

Most data generated from Internet of Things resources, and managed in ALMANAC, are time series
and querying and analyzing them often requires aggregating observations over specified hours,

days, weeks, months etc. Traditional row-oriented SQL databases and query languages are not
optimized for handling time series data at large scale. Although systems like Cassandra can be

exploited to effectively handle time series, approaches have been suggested for adding time series

functionality on top of both HBase and Cassandra. Among these OpenTSDB, a solution for HBase,
and, KairosDB on top of Cassandra.

OpenTSDB

OpenTSDB (Open Time Series Database1) is, as name suggests, a time series database running on
Hadoop and HBase. The HBase schema is highly optimized for fast aggregations of similar time

series and to minimize storage space. Users of the TSDB never need to access HBase directly.

Applications can communicate with the TSD via a simple telnet-style protocol, an HTTP API or a
simple built in GUI.

Figure 7: OpenTSDB and HBase

In OpenTSDB, a time series data point consists of:

 a metric name.

 a UNIX timestamp (seconds or milliseconds since Epoch).

 a value (64 bit integer or single-precision floating point value).

 a set of tags (key-value pairs) that describe the time series the point belongs to.

An example of a time series data point in OpenTSDB:

Metric Timestamp Value Tag1 Tag2

<temperature> <1386132221000> <27> <name=S22> <type=AIR_TEMPERATURE>

1 http://opentsdb.net/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 14 of 43 Submission date: 2014-09-15

OpenTSDB provides a batch import-function to fill the database with data from another source. To

import data from MSSQL one is first forced to export this data to a text file. For OpenTSDB to be
able to import the data, the format should be:

<metric> <unixTimestamp> <value> <tagk>=<tagv> [<tagkN>=<tagvN>]

KairosDB

KairosDB is a rewrite of OpenTSDB and is written primarily for Cassandra, but works with HBase.

KairosDB is much like OpenTSDB in both design, API, and purpose. Yet there are some differences
like:

Rows

 OpenTSDB: One row is 1h of metrics (default)

 KairosDB: One row is 3 weeks of metrics (default)

Aggregations

 KairosDB: Aggregations are optional (enables easy access to raw data)

 KairosDB: Aggregators can aggregate data for a specified period

Grouping

 KairosDB: Offers grouping by tags, time range, or value

KairosDB has, like OpenTSDB, a built in batch import-function that enables easy import from other

existing databases. However, the format of the import file is not supposed to be in csv but in JSON.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

{
 "name":"absolutePressure",
 "tags":
 {
 "name":"S3",
 "type":"ABSOLUTE_PRESSURE"
 },

"datapoints":[
 [1386076339000,102493],
 [1386076399000,102505],
 …
 [1402491075000,101948]
]
}

Figure 8: Example of KairosDB-importable JSON-metric

 Design considerations 3.4

Based on this survey and our test of some the big data solutions our conclusion is that the “divide
and conquer” principles to data management used in MapReduce techniques lend themselves very

well to smart city applications, since these applications are by nature often hierarchical, e.g.,
multiple levels of data aggregation are needed (apartment, building, block, district, city).

The use case analysis shows that the need for managing time series data is important and requires

optimized solutions, whereas other data types will require their specific solutions. Therefore, the

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 15 of 43 Submission date: 2014-09-15

ALMANAC data management framework, specifically the data storage, needs to be open and
extensible.

In addition to efficient data processing on individual gateways/nodes, the MapReduce approaches

can also be applied on a macro level to data management in smart city applications taking full
advantage of the network and cloud environments. The approach supports decentralization of

processing and data, and thus fits well in a federated networking environment as foreseen in
ALMANAC.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 16 of 43 Submission date: 2014-09-15

4. Data Management Architecture

 Overview 4.1

The Data Management Architecture in ALMANAC is based on three core concepts: IoTWorld,
IoTEntity and IoTResource.

 IoTWorld, represents a delimited subset of physical entities which we want to access as a

domain (e.g., a house, block, and district).

 IoTEntity, represents a physical entity. A set of IoTEntities forms an IoTWorld

 IoTResource represents a software component that provides services for observation of or

actuation on IoTEntities.

An IoTWorld Gateway is a software component that provides a logical interface towards an
IoTWorld. The IoTWorld gateway exposes a number of IoTEntities and provides a high-level API for

communicating with this part of the physical world. For example the IoTWorld gateway “Peters
House” can expose a number of rooms and a set of appliances per room. Two or more “House”

IoTWorld gateways can report to a “Block” IoTWorld gateway which does various aggregations and

also includes data other types of IoTEntities such as Waste Bins and provides a high level API
towards the Block. Blocks can be combined into “Districts” which can be combined into “Cities”. As

an example, when a “District” needs to calculate its water/energy consumption it asks each
individual “Block” about its water/energy consumption which in turn will ask each of its underlying

“House”.

In this way IoTWorld gateways can be combined in many different ways depending on the

application, providing different ways of scalable data processing in smart city applications. It should

be noted that an IoTWorld gateway does not necessarily correspond to a physical hardware
gateway, it just provides a logical interface to part of the physical world.

Figure 9. IoTWorld gateways provide a way to distribute and aggregate smart city related data.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 17 of 43 Submission date: 2014-09-15

Each IoTWorld gateway contains a set of IoTResources providing several services for accessing the
IoTEntities of the corresponding IoTWorld. The gateway also contains an Application Resource
Catalogue, which provides means of searching and locating IoTResources and a Storage Manager
for management of the data generated from the IoTWorld, see Figure 10 below.

Figure 10: IoTWorld gateway details

The Data Management Framework provides functionality for

 Publishing and subscribing to data streams for components within the ALMANAC platform as

well as for end user applications outside the ALMANAC platform.

 Requesting values from IoTEntities and IoTResoruces in the system (sensors and

aggregates of sensor data).

 Creating aggregates of data streams to provide higher level objects.

The ALMANAC data model defines the syntax and semantics of the structures needed to retrieve,

distribute and store, any data objects, messages and events generated in the ALMANAC platform. As
have been explained above IoT applications that needs to interface with real world objects do this

through IoTEntities and the underlying IoTResources (providing IoTServices). This allows
transparent and simple monitoring of objects state, and easier actuation, independently from the

actual object technology or location.

The Data Management Framework in ALMANAC Specifically tackles these 2 aspects, i.e.,(a) Physical
World Data Management;(b) IoT Resource and Service Data Management.

 Storage Manager 4.2

The StorageManager handles data persistence for all ALMANAC sources, sensors or results of data
fusion queries in the Data Fusion Manager. Such data may be distributed by the StorageManager

over different IoTWorld Gateways (nodes) in the ALMANAC system. These IoTWorld Gateways can
be implemented on local hardware gateways or servers, or by services in the cloud, and optimized

for the scenarios in ALAMANAC where short-term storage and long term storage are used. Storage

will be transparent to devices and resources producing data, and to resources and smart city
applications.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 18 of 43 Submission date: 2014-09-15

Data is accessed through REST-based interfaces with URI structure and semantics like the other
interfaces in the Data Management Framework, making call forwarding and caching simple. A

common event and data model is used in communication between other components and the

Storage Manager API. The actual implementation of the Storage Manager may differ depending on
the type of data to be stored (e.g. metadata or time series data) and the capabilities of the node

where storage is deployed (e.g. resource constrained device or high-end server).

In the Architecture specification D3.1.1 System Architecture Analysis & Design Specification 1), the

Storage Manager is request based only - it does not push data, nor is it possible to subscribe to data
or schema changes in the Storage Manager. In the initial design, all data from sensors is published

by the IoTWorld gateway to both the Storage Manager and the Virtualization Layer. The

Virtualization Layer is responsible for forwarding data to external applications as well as for
responding to requests for data and routing these to either the Storage Manager or SCRAL. Data

that is derived from event processing is also published both to the Virtualization Layer and the
Storage Manager.

ALMANAC query facilities can be used to retrieve data in two ways depending on applications and

end-user context. Observations on properties of physical world entities are stored in the Storage
manager which allows retrieval, processing and analysis of historical data, typically represented as

time series. Other applications might, instead, require a direct communication with IoTResources, for
instance if requirements on real time information is important. The distributed IoT Storage

architecture of ALMANAC supports a flexible way of configuring how to store data over a set of IoT
Resources, IoT gateways and IoT Cloud services.

 Data Fusion Manager 4.3

The Data Fusion Manager provides the means to compose new data from existing data streams
using a data fusion language that will be developed in the ALMANAC project. This new data

describes properties of real world entities or new aspects of the data coming from a sensor. By
combining these in layers, a set of representations of real world entities in the smart city can be built

up that fits the need of a specific ALMANAC end user application (e.g. waste management, water
supply, traffic management).

 Scalability 4.4

A main design objective for the DMF in ALMANAC is scalability in order to gracefully adapt to

increasing number of data sources and event rules generating new data. This will primarily be
achieved through horizontal scaling (scaling out), i.e., by adding new IoTWorld Gateways (nodes)

and distributing data and computations on them. The mechanisms for scaling out will be designed
into the ALMANAC architecture, but at the individual node (IoTWorld Gateway) level we will also

make use of the optimal database technology and standards for the particular data types handled.

Data will be distributed over the IoTWorld Gateways in the ALMANAC system by the Storage

Manager optimizing storage for ALAMANAC applications with different short-term storage and long

term storage requirements.

Storage will be transparent to applications, devices and resources producing data and to consumers

such as other resources and smart city client applications. REST-based interfaces for data retrieval,
with URI structure and semantics like the other interfaces in the Data Management Framework, is

making call forwarding and caching simple. A common event and data model is used in

communication between components and the Storage Manager REST API.

 Caching 4.5

The Data Management Framework provides caching of data on different levels in the architecture in

order to support high availability and resilience. This multi-level caching exploits the layered and
modular architecture of the ALMANAC platform. This means that storage capacity is utilized

wherever it is available, on devices, gateways, data stores etc.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 19 of 43 Submission date: 2014-09-15

5. Data Retrieval and Query

In Almanac IoT data is retrieved in two ways depending on applications and end-user context. The

first data retrieval channel is through the Storage Manager query interface. Observations on

properties of physical world entities are, in fact, stored in the Storage managers on the different
IoTWorld Gateways which allows retrieval, processing and analysis of historical data most often time

series related data.

The second data delivery means involves, instead, real-time communication with IoT Resources

connected to ALMANAC, thus supporting applications needing real-time information, e.g., to update

dashboards. As already mentioned in previous chapters, the distributed IoT Storage architecture of
ALMANAC supports a flexible way of configuring how to store data over a set of IoTWorld gateways.

In this chapter we will focus on how to retrieve data.

 Query API 5.1

The forces acting on the design of the Data Management Framework Query API are

 the desired expressiveness of Query language and API,

 the requirements on the Query Language from the Data Fusion Language (DFL) and,

 the restrictions (some of them purely practical, e.g. available resources) imposed by using

different database engines.

For performance reasons, the DFL engine will use queries for long time series against static data
stores in the Data Management Framework.

It has been a design choice in the Data Management Framework to use different database
technologies to better address different application needs, and to be able to substitute the actual

storage used by ALMANAC instances depending on features, licensing, costs and future technical

developments. E.g., we would like to use NoSQL, column stores or similar databases for time series
data that has huge amounts of data, frequent inserts, no updates and heavy analysis and querying.

For metadata on time series (data streams), document, XML or RDF stores are a better choice. For

storing and querying for relationships (containment and other relations) between entities and
resources, we may use graph databases such as Neo4J.

To allow for a uniform way of expressing this data across the whole system, and to build uniform
interfaces to different kind of databases, we have chosen to limit the schema and data querying

capabilities of the DMF. A common schema for exchanging IoT information on entities, data streams

and data points has therefore been defined and querying has been designed for using a REST
paradigm, only and to provide data encoded in a subset of the OData2 primitives (or similar) that will

be suitable for most clients, and the possibility of constructing and storing more complex
parameterized queries in some other language.

In addition to queries and access to data streams there may be a need for statistical analysis of
data. It will be investigated whether it may be sufficient for analysis purposes if data can be

provided in a simple format such as comma separated values (csv) and supplied to services like

Azure Machine Learning3 or another R engine4.

 Data format 5.2

An XML-based content model provides a representation of an IoTEntity (a Virtual Entity in IoT-A

vocabulary [1]) and its properties, modelled by IoTProperty, a serialization that can be used as

2 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=odata
3 http://azure.microsoft.com/en-us/services/machine-learning/
4 http://www.r-project.org/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 20 of 43 Submission date: 2014-09-15

payload in an Event and as result and body of the RESTful API's GET and POST operations. The
IoTEntity corresponds to physical world entity upon which we can observe properties (and perform

actions on. The content model is formally defined by an XML Schema. There may be JSON

representations of this schema.

The format as it is now will be further developed with possibilities to express relations between

entities (e.g. containment) and data streams (e.g. "data stream A is the integral of data stream B" or
data "stream X is an estimate of the missing data in data stream Y where the sensor was off-line").

Different representations of the schema for resource-constrained environments and different clients
will be implemented.

 Location and position 5.3

The current Data Storage prototype supports location data (both as metadata and as stream for any
entity or resource) and locations-based search. This is important functionality for a Smart City IoT

platform, and the data management activities will have to further analyze both which formats will be

supported and how querying will be expressed in the Query API. Currently, simple point coordinates
are used internally, while GeoJson5 support is available.

{

 "type":"Feature",

 "geometry":{

 "type":"Point","coordinates":[10.189983,56.170933]

 },

 "properties":{

 "name":"My iPhone | Location of phone",

 "description":"iPhone Device | Location of the iPhone, based on

GPS/WIFI/CELL"

 }

}

Figure 11: GeoJson for phone device

 Standards 5.4

 Query API 5.4.1

Querying the Storage Manager is currently done via an HTTP/REST-based API where resource
collections can be filtered by using query string parameters for id, name, type and location. This

proprietary API will be smoothly migrated to standard OData query filters to improve interoperability.

The Open Data Protocol (OData), enables the creation of REST-based data services, that allow

resources identified using Uniform Resource Locators (URLs) and defined in an Entity Data Model

(EDM), to be published and edited by Web clients using simple HTTP messages. The OData JSON
Format extends the core specification by defining representations for OData requests and responses

using a JSON format. The EDM for the Storage Manager is the schema described in section 7.

The IoTWorld Gateways and its Application Resource Catalogue locally support XPath-based

querying for IoTResources, a feature that will be extended to the network level. By using XPath
expressions in the Application Device Catalogue REST API, the collection of local gateway

IoTResources may be filtered on any part of their XML representation.

 Query Language 5.4.2

More expressive query capabilities, especially for metadata and relationships for entities and data

streams, may be supported using persistent parameterized queries. These can be stored and later

5 http://geojson.org/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 21 of 43 Submission date: 2014-09-15

executed with different parameters using HTTP POST and GET, or an RPC-style API. Depending on
the storage implementation, SQL or SPARQL may be used. E.g. querying MongoDB using SPARQL is

possible via AllegroGraph MongoGraph6.

As the storage of time-series data is likely to use specialized data stores like KairosDB or OpenTSDB
(discussed in section 3), the query language used for this data is likely to be different from the one

used for metadata and relations.

 Messaging 5.4.3

The Linksmart platform will be used throughout the project, with the Linksmart Event Manager as a
publish/subscribe hub. For interoperability and performance reasons, MQTT7 is considered for local

gateways and PubSubHubbub8 for end-user clients like web applications, mobile apps and external

web services.

 Data Formats 5.4.4

The primary serialization format (representation) for device and measurement data adopted by the
Data Management Framework is XML-based, enriched with RDF-A annotations. However, additional

formats may be supported including plain JSON, JSON-LD, RDF and CSV, depending on specific

application requirements

6 http://franz.com/agraph/allegrograph/
7 http://mqtt.org/
8 https://code.google.com/p/pubsubhubbub/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 22 of 43 Submission date: 2014-09-15

6. Data Fusion

 Data Fusion in ALAMANAC 6.1

Data Fusion is the process of integration of multiple data and knowledge facts representing the

same real-world object into a consistent, accurate, and useful representation. This general definition
is typically specialized in a domain-specific manner and the corresponding tools and implementations

might vary accordingly. In the ALMANAC platform the role of Data Fusion (DF) is to fuse events

created across the network; doing so should be possible with a simple and uniform method. With
this interpretation, for ALMANAC the functionality Data Fusion and Complex Event Processing (CEP)

is tightly coupled.

CEP has already been extensively investigated and several tools and platforms are available,

including both as research and commercial solutions. There are not only several engines, there are

also multiple DF Languages (DFL) available – like PQL for the CEP engine Odysseus from the
University of Oldenburg, or EPL of Esper CEP engine from EsperTech Inc. The different engines and

languages offer different features and hold different advantages and disadvantages. Therefore the
focus of the innovation provided in ALMANAC is on the integration of these engines, providing

components for the ALMANAC platform through which this functionality can be reached.

The DFL in ALMANAC will be a language that provides the functionality else offered through several
engines, taking into account that not all engines allow all possible operations. Therefore the interpret

of this language shall be aware of the semantics of the operations described, doing so the DF engine
from ALMANAC is able to “know” if the operation is possible with the engine or engines deployed in

the platform. Additionally, a semantically defined language allows the management of the queries,
the same way as queries manage data.

Figure 12: Data Fusion building blocks

The data to be fused by the DF infrastructure is delivered as payload of events pushed by the
ALMANAC Event Manager, which works as an event broker. Such data is collected and possibly fused

by the DF Manager, applying the stored DF-queries. As the fusion happens, new events can be
generated from the query results, and can participate in further fusions to generate complex or

aggregate data streams.-This process is depicted in Figure 12.

The complete fusion process is managed by available CEP engines, and might be different for
specific ALMANAC instances. Therefore the elements needed for a working infrastructure are:

 A component which feeds events into the CEP engines,

 A handler which reacts to the newly created events by the queries,

 An interpreter which holds the queries as processable objects,

 A manager which controls these components,

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 23 of 43 Submission date: 2014-09-15

 Finally a common abstraction of available CEP engines is needed.

The resulting logic architecture is reported Figure 13.

Figure 13: Architecture of first Data Fusion prototype integrating to sample CEP engines.

 Data Fusion Language review and design choices 6.2

In order to define a Data Fusion Language able to tackle both fusion and CEP, in a technology

independent manner, a first survey of existing languages has been performed and the corresponding
features have been categorized and compared to find the greatest common subset of operations

supported by them. In general CEP languages can roughly be divided in 2 families, one exploiting

SQL-like syntax and the other using no-SQL constructs. In the SQL-like family we have for example:
the EPL language from Esper, CQL from Oracle, and Siddhi WSO2; Conversely,non-SQL languages

encompass: PQL, a procedural language from Oldenburg Universität, Drools Fusion, a rule oriented
language from JBoss, the druid community has also a query language for Data Management which is

JSON based.

The ALMANAC DFL does not want to attach to one single technology; therefore a study was made to
extract the maximum amount of functionality possible through available CEP engines. With this

study it was possible to abstract the functionality and to develop a new language which is
independent form the CEP engine implementation running. This language is semantically defined

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 24 of 43 Submission date: 2014-09-15

through RDF and its AST (Abstract Syntax Tree). Thanks to the syntactical comprehension of the
DFL, the interpretation can identify the functionality and transform the DFL statements to the format

of the specific CEP engine deployed. Additionally it is possible to provide three variations of the same

language: XML based, JSON based and a Domain Specific Language (DSL) for ALMANAC; in this way
the XML and JSON variants can be used for M2M transactions and the DF-DSL would be used by

humans.

Due to the heterogeneity requirements of the ALMANAC platform and the high amount of

functionality provided by various languages, we decided to concentrate our efforts on EPL at first.
We then identified how the query features could be mapped to other languages. After comparing the

features of these languages, we tried to work out possible translations between languages and to

identify which features are covered by one language and which are not. As an example the attached
tables (see appendix) shows the early comparison between some CEP Languages.

Until now our study concentrated on the functionality and semantics of several languages, but there
are other functionalities needed in ALMANAC platform for a DFL. Looking at SQL-like syntaxes three

sub-languages can easily be identified:

 A Data Definition Language (DDL): CREATE, DROP, ALTER, RENAME

 A Data Manipulation Language (DML):SELECT, INSERT, UPDATE, DELETE

 A Data Control Language (DCL): GRANT, REVOKE

Similarly, the proposed DFL has several sub-languages of which the query language is just one. A
possible division of the ALMANAC DFL could be as following:

 Statement Definition Language (SDL): This part of the language manages queries. This

can be implemented through SQL and/or SPARQL. The possible statements are:

o CREATE: The query will be stored and continuously querying the events of the

system.

o RUN: Execute the query and return immediately an answer with the events that

match. After the execution the system returns to the state it was before.

o DROP: A previously created query is removed.

o PAUSE: A stored query is deactivated but not dropped.

o CONTINUE: An inactive query is reactivated.

o QUERY: For querying sored queries.

 Fusion Data Language (FDL): this is the same functionality as provided by e.g. ESPER,

Odysseus, etc.

o SELECT: For query statements

 Data Cloud Language (DCL): this part indicates which data is published outside the local

broker:

o SCOPE: Indicates if the result is sent to another ALMANAC instance or stays in
the local scope

 Manipulation Language (DML): As in SQL, this part indicates what should happen with

the result:

o INSERT: This instruction determines whether the event is stored or republished and

how.

 Event Generation Language (EGL): Allows the definition of event generation rules

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 25 of 43 Submission date: 2014-09-15

7. Data Management Framework Data Model

 Overview 7.1

The ALMANAC data model defines the syntax and semantics of the structures needed to retrieve,

distribute, and post to storage, any data objects, messages and events on the ALMANAC platform.
IoT applications built upon the ALMANAC platform typically interface real world objects through their

abstract counterparts named IoTServices. This allows transparent and simple monitoring of objects

state, and easier actuation, independently from the actual object technology or location To support
this abstraction, the Data Management Framework in Almanac therefore cover both these aspects,

i.e.:

• Physical World Data Management

• IoT Resource and Service Data Management

The ALMANAC project builds on the earlier work on the Hydra/LinkSmart middleware9. Within the
LinkSmart community, there have been efforts towards a representation to exchange measurement

and device data inside the LinkSmart middleware. This has been further developed within the
ALMANAC project. It builds on the Linksmart Device model and the UPnP10 SCPD11 representation

used by the LinkSmart components. Desirable qualities of the representation were that it should:

 Be able to represent the state of sensor and actuator state variables of the LinkSmart

resources and devices at different points in time as well as updates (revisions) of these state
observations.

 Be able to represent the devices and real-world entities in a way that matched the

LinkSmart Device model and IoT-A Virtual Entities12.

 Be extensible by the LinkSmart community and under the control of the LinkSmart

community.

 Leave the choice of XML, JSON, binary or other representations up to the LinkSmart

community.

There are of course a number of existing ontologies and formats that have been developed before

and after LinkSmart, which have served as input to the design. However, the choice was to design a

custom model for LinkSmart intra-component communication. The UPnP SCPD format already
featured in the middleware was not chosen since it did not cover the state observation (time series

data) aspect. However, SCPD is used as the discovery protocol at the gateway level, where IoT
Resources announces themselves either through the UPnP protocol or through a direct registration

with the IoT Application Resource Catalogue.

The extensive process-oriented model in SensorML13 was not a good fit to the LinkSmart device
model, which puts more emphasis on the physical devices and real-world entities. Also, the

SensorML standard itself does not have a representation for encoding state observations. However,
the Observations and Measurements14 (O&M) standard, which is one of the schemas used to

represent measurements together with SensorML, was used as a basis for the state observation
elements in the schema. Even though the elements in the observation use the same names as in

O&M, the XML representation for O&M was not used. This was in order to have the choice within the

LinkSmart community to construct the representation in a way optimal for the data exchange
between components inside the LinkSmart middleware, e.g. with regards to the choice between XML

9 http://sourceforge.net/projects/linksmart/
10 http://www.upnp.org
11 http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
12 http://www.iot-a.eu/public/public-documents
13 http://www.opengeospatial.org/standards/sensorml
14 http://www.opengis.net/doc/is/om/2.0

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 26 of 43 Submission date: 2014-09-15

or JSON and the compactness of the representation. SenML15, used to represent measurements in
some HyperCat16 catalogues, had the desired compactness and choice of JSON or XML

representation, but lacked some of the features incorporated from O&M (e.g. ResultTime) and did

not tie into the rest of the data format naturally.

The conclusion for ALMANAC was to build on the existing LinkSmart models, incorporating elements

from other standards, while keeping the design of the data exchange format up to the LinkSmart
community. If the need arises to integrate with other middleware that uses any of the

aforementioned standards, transformations to and from subsets of these are certainly possible.

 Physical World Data Management 7.2

The IoTEntity XML content model is a representation of an IoTEntity (corresponding to the Virtual

Entity in IoT-A [1]) and its properties, a serialization that can be used as payload in an Event and as
result and body of the RESTful API's GET and POST operations. An IoTEntity corresponds to a

physical world entity upon which we can observe properties and perform actions on. The content

model is formally defined by an XML Schema. There may be JSON representations of this schema.

 Element: IoTEntity 7.2.1

When used as part of the RESTful API, five types of resources may be accessed:

 IoTEntity - Represents a physical entity as a whole. This level is also used as content in

Event messages.

 IoTProperty - An individual property of an entity identified by the URI in the request.

 ArrayOfIoTEntity - A list, or collection, of IoTEntity elements.

 ArrayOfIoTProperty - A list, or collection, of IoTProperty elements of an entity identified by

the URI in the request.

 ArrayOfStateObservations - A list, or collection, of IoTStateObservation elements of a

property of an entity, identified by the URI in the request

Each level is represented as a root element in the corresponding XML document and is described in

detail below. Note that IoTProperty will also be present as a child element to IoTEntity.

Entity objects are represented by IoTEntity elements with the following content model:

15 http://tools.ietf.org/html/draft-jennings-senml-10
16 http://www.hypercat.io/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 27 of 43 Submission date: 2014-09-15

Figure 14: The IoTEntity Content Model

The IoTEntity is using a set of RDFa17 attributes @about, @prefix, @xml:base and @typeof where all
attributes except @xml:base are required. The @about attribute must be used for providing a

globally unique identifier of the entity.

The optional Name and Description elements can be used to provide human readable descriptions of

the entity. They are not intended to hold any machine interpretable data.

The optional and repeatable Meta element can be used to record any additional metadata about an
entity. The type of metadata MUST be recorded using the RDFa attribute @property.

The repeatable IoTProperty element represents all properties of the entity, its content model is
described int the following subsections.

Finally, the content of an IoTEntity is open for extension by any other element provided that it is

defined within a namespace that differs from the target namespace of the IoTEntity schema.

 Element: IoTProperty 7.2.2

The IoTProperty element describes a particular property of an entity in an IoT system, including
both metadata and possibly several observations of state conditions, data values or measurements.

17 http://www.w3.org/TR/xhtml-rdfa-primer/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 28 of 43 Submission date: 2014-09-15

 Figure 15: The IoTProperty Content Model

Similar to the IoTEntity, also IoTProperty is using the same set of RDFa attributes @about, @prefix,

@xml:base and @typeof.

The @about attribute must be used for providing a unique identifier of the property within the scope

of its parent entity, i.e. the id space for properties is locally scoped in contrast to the IoTEntity id

space that should provide globally unique identifiers. The concatenation of IoTEntity and
IoTProperty identifiers forms a globally unique identifier of the property.

The @prefix attribute is optional but must be used to define any CURIE18 prefix used by any child
element of IoTProperty and not defined by any other @prefix attribute of the parent IoTEntity

element.

18 Compact URI expressions, http://www.w3.org/TR/curie/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 29 of 43 Submission date: 2014-09-15

The IoTProperty element can also include an optional @datatype attribute that should be used to
record the type of the data value of the property recorded within the children

IoTStateObservations/Values elements. It is recommended to use XML Schema datatypes such as

'xs:datetime' where the prefix 'xs' must be defined using the @prefix attribute.

The optional Name and Description elements can be used to provide human readable descriptions of

the property. They are not intended to hold any machine interpretable data.

The optional UnitOfMeasure element can be used to record the unit of measurement for the data

value provided in the child IoTStateObservation/Value element, such as "kW" or "ppm". The type of
data MUST be recorded using the RDFa attribute @typeof.

The optional and repeatable Meta element can be used to record any additional metadata about an

entity. The type of metadata must be recorded using the RDFa attribute @property.

The values of the property, a time-series based data set is represented by the optional and

repeatable IoTStateObservation element, that includes the Value element recording the data as a
string, and time stamps for both PhenomenonTime and ResultTime. The Phenomenon Time

describes the time that the result applies to the property of the IoTEntity and the Result Time is the

time when the procedure associated with the observation act was applied, equivalent to the
concepts with the same names in the OGC Observations and Measurements Model19. Also

IoTStateObservation includes an optional extension point that can hold additional complex data
structures representing property values using elements from another namespace than used as target

namespace by the IoTEntity schema.

 Figure 16: The IoTStateObservation content model

Finally, the content of an IoTProperty is open for extension by any other element provided that it is
defined within a namespace that differs from the target namespace of the IoTEntity schema.

An example of a Power Switch entity is provided below (Figure 17). A power switch has two
properties, current power consumption and a status that can be either on or off.

19 : http://www.opengis.net/doc/is/om/2.0

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 30 of 43 Submission date: 2014-09-15

Figure 17: A power switch entity example

The IoTEntity default namespace is declared on the root element to

'http://linksmart.org/IoTEntity/1.0'. The globally unique identifier for the entity is provided in the
@about attribute as '0C486748-CF2A-450C-BCF6-02AC1CB39A2D:1'.

The entity is typed as a 'PowerSwitch' referencing an ontology via the prefix 'cnet' using the CURIE

notation. The prefix 'cnet' is defined using the @prefix attribute to the URI
'http://ns.cnet.se/ontologies'.

The two properties have locally scoped identifiers recorded in the @about attributes,
'PowerConsumption' and "DeviceStatus". Both properties are also typed, referencing the previously

defined 'cnet' prefix, using the @typeof attribute. The datatypes of the property values are recorded

in the @datatype attributes referencing XML Schema datatypes via the 'xs' prefix.

The 'PowerConsumption' property use the UnitOfMeasurement element to record the unit of the

value, 'W'. The @typeof attribute is used to reference a type system, again using a CURIE.

Finally, the data values and associated phenomenom and result times for the two properties are

provided within IoTStateObservation elements.

 Collections of objects - The arrays 7.2.3

Lists, or collections, of objects are provided within a wrapper element at the root level.

Figure 18: Collection wrappers for collections of IoTEntity, IoTProperty and IoTStateObservation elements

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 31 of 43 Submission date: 2014-09-15

Each collection wrapper can have an arbitrary number of child elements of the specific type. The
wrappers do not have any additional elements or attributes.

 Events - Content Model 7.2.4

Event message header Content Model

Events are represented by exploiting an XML syntax. The content model for events consists of a
generic metadata message header with a payload of data, such as IoTProperty state observations of

IoTEntities. The content model is adapted to the semantic web standards from W3C, namely
the RDFa Core 1.1 – Second Edition20.

 Figure 19: The top level of the generic Event Model

The Event model is defined in the Event XML Schema21 and basically consists of three parts, a

descriptive event metadata section (EventMeta), an event source description (Source) and a content

body (Content) that includes the actual payload of the event, e.g. a temperature reading for a room
entity.

20 http://www.w3.org/TR/2013/REC-rdfa-core-20130822/
21 https://fogbugz.cnet.se/default.asp?W90

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 32 of 43 Submission date: 2014-09-15

The @about and @prefix attributes (see RDFa22) will be used to express a globally unique identifier
for the event and ontology reference definitions for the event message.

 Figure 20: The EventMeta content model

The EventMeta element is described above. The EventID includes a globally unique identifier of the

event. It is provided for compatibility reasons and must be the same value as the one expressed in
the @about attribute of the Event element.

The TimeStamp element holds the xs:datetime of when the event was first generated.

The EventType and Topic elements provide means for tagging the event with descriptive metadata

according to a predefined ontology referenced using the @typeof attribute (RDFa).

The Comment element can be used to provide human readable information about the event. The

intention is that this element may be used during development and testing.

Finally, the content of an EventMeta is open for extension by any other element provided that it is
defined within a namespace that differs from the target namespace of the Event model schema.

22 http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 33 of 43 Submission date: 2014-09-15

 Figure 21: An example of an Event message

Event data content - The message payload

The event payload as expressed within the Content element is normally expected to follow the
IoTEntity XML Schema for IoT applications (please see the IoTEntity section for further information

about this model). However it is defined opaquely and any XML content that does not violate the

well-formed property of the XML document is accepted. The only constraint is that the Event XML
Schema requires that the Content child elements are defined in another namespace than used as

target namespace by the Event schema itself.

 IoTResources and Services Data Management 7.3

IoTResources are software objects that provide IoT Services for applications and end-users, e.g.,

retrieving and analyzing data about the physical world, invoking actions and so on. Currently three
types of IoTResources have been defined and implemented:

• IoTDevice

• IoTSensor

• IoTThing

IoTResources typically runs in IoTWorld gateways. The IoTResources provides the means to deliver
the information about IoTEntities in the IoTWorld and to actuate on them.

As an example see figure below that shows which IoTResources have been discovered on the
gateway ”ARMSTRONG” and which IoT Services they offer. IoTResources are discovered and

managed by the IoT Application Resource Catalogue.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 34 of 43 Submission date: 2014-09-15

Figure 22: IoTResource Catalogue Browser

 IoT Resource REST 7.3.1

EachIoTResource provides a REST interface to retrieve data about the resource but also the

IoTEntity it is connected to.

http://192.68.1.99:61345/services

http://192.68.1.99:61345/services/<name>

Retrieves all state variables

associated with the service

http://192.68.1.99:61345/services/<name>/statevariables

Retrieves the current value of

all state variables

http://192.68.1.99:61345/services/<name>/statevariables/<name>

Retrieves the value of a

specified state variable

http://192.68.1.99:61345/services/<name>/actions

Retrieves all actions that can

be performed on the
IoTResource

 IoT Resource Catalogue XPath 7.3.2

The IoT Resource Catalogue provides a REST-based interface to select and retrieve data about
IoTResources and their services. The REST-interface is based on XPath-querying in the IoT Resource

Description files which are based on the SCPD (Service Control Point Document) from the UPnP-

standard. Some examples this interface are given below

http://192.68.1.97:40678/*

List all available resources

http://192.68.1.97:40678//IoT:gateway[.=’KURSAAL’] List all resources at a

http://192.68.1.99:61345/services
http://192.68.1.99:61345/services/%3cname
http://192.68.1.99:61345/services/%3cname
http://192.68.1.99:61345/services/%3cname%3e/statevariables
http://192.68.1.99:61345/services/%3cname%3e/statevariables
http://192.68.1.99:61345/services/%3cname%3e/actions
http://192.68.1.97:40678/*
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 35 of 43 Submission date: 2014-09-15

 gateway

http://192.68.1.97:40678//upnp:device[upnp:manufacturer=’CNet’]

[IoT:gateway[.=’KURSAAL’]

List all resources from

manufacturer CNet running
at a gateway.

http://192.68.1.97:40678//upnp:device[upnp:manufacturer=’CNet’]
[IoT:gateway[.=’KURSAAL’][IoT:currentconsumption>100]

List all resources from
manufacturer CNet running

at a gateway KURSAAL and

that is currentlyconsuming
more than 100 W.

 IoT Resource Catalogue Retrieval and Service Invocation 7.3.3

The IoT Resource Catalogue also provides an integrated way of querying and invoking services on

matching IoT Resources. Two examples are given below:

http://192.68.1.97:40678/*/services/energy

List the state variables for all resources

that provides an energy service

http://192.68.1.97:40678//IoT:gateway[.=’KURSAAL’]/

services/switch/actions/TurnOff

Turn off all switches at gateway

KURSAAL

http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/*
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 36 of 43 Submission date: 2014-09-15

8. Conclusions and Future Development

This report describes the first design and implementation choices made in the context of the Data

Management Framework Workpackage (WP6) of the ALMANAC platform. We have shown how we

will make use of established principles for big data management and implement them in a Smart
City context using a Map Reduce technique at a high level and leverage on existing IoT Models like

IoTEntity, IoTResources, and IoT Gateways derived from important reference models such as IoT-
A. We have also explained how Almanac Data Management Framework makes use of important

standards such as REST, XPath, Odata and SCPD.

The document includes the design and implementation of the Storage Manager, IoTWorld gateway,
IoT Resource Catalogue, the Query interfaces and considerations about the Data Fusion Language,

and the Event and Data model, including central concepts such as the IoTEntity and IoTResource.
We also show examples of the REST based interfaces to the Data Management Framework, in

particular to the IoT Resource Catalogue.

This document builds further on the results and documentation accompanying the internal

deliverable ID6.2 of the initial prototype components for data fusion, storage management and

event processing. In the upcoming project iterations, the implementations of the data management
components will be refined, the REST APIs will be further evaluated and the functionality of the IoT

Resources Catalogue will be extended with resource annotation capabilities. The work will coordinate
with the review and revision of the overall ALMANAC architecture in WP3.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 37 of 43 Submission date: 2014-09-15

9. References

[1] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. v. Kranenburg, S. Lange, and S. Meissner, Eds.,

Enabling Things to Talk - Designing IoT solutions with the IoT Architectural Reference Model.
Springer, 2013.

[2] G. P. C. a. S. F. Khoshafian, "A Decomposition Storage Model," presented at the ACM SIGMOD
International Conference on Management of Data, 1985.

[3] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki, "NoDB: efficient query execution on

raw data files," presented at the SIGMOD '12 Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, 2012.

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 38 of 43 Submission date: 2014-09-15

10. Appendices

 Data Fusion Language constructs comparisons 10.1

Model Window Comparison

 EPL Esper CQL ORACLE Siddhi WSO2 Drools Fusion Jboos

Time Window .win:time(<period>) '['range <period>']' #window.time(<period>

)

over window:time(

<period>)

Time Batch

Window

.win:time_batch(<period>) '['range <period> slide

<period>']'1

#window.time_batch(<p

eriod>)

Time Batch

Window /w

accumulation

.win:time_batch(<period>, <miliseconds>) ||

.win:time(<size>).win:time_batch(<period>)

'['range <period> slide

<period>']'

Time-

Accumulating

Window

.win:time_accum(<period>)

Time-Length

Combination

Batch Window

.win:time_length_batch(<period>, <size>) '['rows <size> range

<period>']'

Time-Order

Window?

.ext:time_order(<timestam_expresion>, <period>) ?

Keep-All

Window

.win:keepall() '['range unbounded']' declare <stream>

@expires(<period>) end

Length

Window

.win:length(<size>) '['rows <size>']' #window.length(<size>

)

over

window:length(<size>)

Length

Window /w

Output Slide

.win:length(<size>).win:length_batch(<size>)? '['rows <size> slide

<size>']'

Length Batch

Window

.win:length(<size>) '['rows <size> slide

<size>']'1

#window.length_batch(

<size>)

Sorted

Window

.ext:sort(<size>, <column_name> <sort criteria>,

<column_name> <sort criteria>, …)

?

Ranked

Window

.ext:rank(<column_name> [, <column_name>] ,

<size>, <column_name> <sort criteria>[,

column_name> <sort criteria>])

?

Unique

Window

.std:unique(<column_name> [, <column_name>]) '['partition by

<column_name> [,

<column_name>] rows 1']'

#window.unique(<colum

n_name>)

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 39 of 43 Submission date: 2014-09-15

Expiry

Expression

Window

.win:expr(expiry expression) ?

Expiry

Expression

Batch Window

.win:expr_batch(expiry expression) ?

Constant

Value-Based

Range

.win:expr(<expresion>)? '['range <float> on

<column_name>']'

Constant

Value-

Timestap-

Based Range

.win:expr(<expresion>)? '['range INTERVAL <timestap>

DAY TO SECOND on

<column_name>']'

First Length

Window

.win:firstlength(size) ?

First Time

Window

.win:firsttime(time period) ?

Last Event

Window

.std:lastevent() ?

First Event

Window

.std:firstevent() ?

First Unique

Window

.std:firstunique(<column_name>) ? #window.firstUnique(<

column_name>)

Grouped Data

Window

.std:groupwin(<column_name> [, <column_name>]) '['partition by

<column_name> [,

<column_name>]']'?

Grouped Data

Window

Length

Window

.std:groupwin(<column_name> [,

<column_name>]).win:length(<int>)

'['partition by

<column_name> [,

<column_name>] rows

<size>']'

Grouped Data

Window

Length

Window &

Time Window

.std:groupwin(<column_name> [,

<column_name>]).win:length(<int>).win:time(<int>)

?

'['partition by

<column_name> [,

<column_name> rows <size>

range <period>']'

Grouped Data

Window

Length

Window &

Time Window

/w Output

Slide

.std:groupwin(<column_name> [,

<column_name>]).win:length(<int>).win:time(<int>)

.

win:length_batch(size)

'['partition by A1,..., Ak

rows N range T1 slide T2']'

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 40 of 43 Submission date: 2014-09-15

Externally-

timed Window

win:ext_timed(<timestamp expression>, <period>) ? #window.externalTime(

<timestamp

expression>, <period>

)

Externally-

timed Batch

Window

win:ext_timed_batch(<timestamp expression>, time

period[,optional reference point])

?

Expression Comparison

 EPL Esper CQL ORACLE Siddhi WSO2

Aritme

tic:

Add,

Substr

act,

Multip

licati

on,

Divisi

on

+, -, '*', / +, -, '*', / +, -, '*', /

Module % mod %

Intege

r

Divisi

on

<int>/<int> div, idiv

Logica

l

Connec

tors

OR, AND OR, AND, XOR OR, AND

Logica

l

Compar

ison

 =, !=, '<', '>',

'<=', '>='

 =, !=, '<',

'>', '<=', '>=',

eq, ne, lt, le,

gt, ge

 ==, !=, '<', '>',

'<=', '>='

Logica

l

Specia

l

IS IS

Logica

l 1-

aria

NOT NOT NOT

Navega

bility

object_identificator{

'.'(<function>|<prope

rty>)}

'.'

Concat

enate

'||' '||'

Binary &, '|', ^

Patter

n:

Altern

ation

'|' '|'

Patter

n:

Groupi

ng

'(',')' '(',')'

Patter

n:

Single

-

charac

ter

duplic

ation

'*' '+' '?' '*' '+' '?'

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 42 of 43 Submission date: 2014-09-15

Patter

n:

Concat

enatio

n

' ' ' '

Emptin

ess

test

none empty

Existe

nce

exists exists none

Cartri

dge

 @

Single

Row

Functi

ons

<function> <function>

Array

Defini

tion

{ [<expression>

[,<expression>]] }

Dot

Operat

or

<expression>.<method>

([<parameter>

[,<parameter>]])[.<me

thod>(...)][...]

<expression>.<me

thod>([<paramete

r>

[,<parameter>]])

[.<method>(...)]

[...]

Duck

Typing

<expression>? ||

<expression>.<method>

? ||

<expression>?.<method

>?

Belong

s to

<test_expression>

[not] in

(<expression>

[,<expression>]*)

In

range

in

('['|'(')<int>:<int>(

')'|']')

Betwee

n

between

<begin_expression>

and <end_expression>

Matchi

ng

<test_expression>

[not] <like

pattern_expression>

[escape

<string_literal>]

Regula

r

Expres

ion

comari

son

<test_expression>

[not] regexp

<pattern_expression>

One or

more

True

<expression>

<Logical_operator>

(any|some)

(<expression>

Almanac D6.1 A scalable data management architecture for Smart City environments

Document version: 1.0 Page 43 of 43 Submission date: 2014-09-15

[,<expression>...])

All

true

<expression>

<Logical_operator>

all (<expression>

[,<expression>...])

Instan

tiatio

n

new { <column_name> =

[<assignment_expressi

on>]

[,<column_name>...] }

Lamda

functi

on

<lambada>

Alias Create an alias for

an expression

'AS'

identifcator

